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Abstract 

In this study, long-term national-based yields of maize, rice, sorghum and soybean 

(MRSS) from 1961 to 2013 are decomposed using Robust Principal Component Analysis 

(RPCA). After removing outliers, the first three principal components (PC) of the persistent 

yield anomalies are scrutinized to assess their association with climate and to identify co-

varying countries and crops. Sea surface temperature anomalies (SSTa), atmospheric and 

oceanic indices, air temperature anomalies (ATa) and Palmer Drought Severity Index 

(PDSI) are used to study the association between the PCs and climate. Results show that 

large-scale climate, especially El Niño-Southern Oscillation (ENSO) and North Atlantic 

Oscillation (NAO) are strongly correlated with crop yield variability. Extensive maize 

harvesting regions in Europe, rice and soybean in South America and sorghum in North 

America experienced the influence of local climate variability in this period. Sorghum yield 

variability across the globe exhibits significant correlations with many atmospheric and 

oceanic indices. Results indicate that not only do the same crops in many countries co-

vary significantly, but different crops, in particular maize, in different PCs also co-vary with 

other crops. Identifying the association between climate and crop yield variability and 

recognizing similar and dissimilar countries in terms of yield fluctuations can be informative 

for the identified nations with regard to the periodic and predictable nature of many large-

scale climatic patterns. 

Key words: Crop yields, Climate, Food security, Joint variability, RPCA 

1. Introduction 

Numerous studies suggest that weather impacts crop yield variability (Ray et al., 2015; 

Chen et al., 2004; Osborne and Wheeler, 2013). An understanding of the past global 

climate and crop trends and their linkage provides the opportunity to determine recent yield 

progress more precisely and project the impacts of climate changes on food availability 
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(Lobell et al., 2011; Ray et al., 2015). In this regard many studies have been conducted at 

the local-scale (see more details in Najafi et al. (2018a)). Some global studies investigated 

the links between crop yields and local climate such as precipitation and temperature (Ray 

et al., 2015; Osborne and Wheeler, 2013; Lobell et al., 2011; Lobell and Field, 2007) and 

drought (Li et al., 2009) and a few of them focused on the connection between crops and 

large-scale climate such as El Niño-Southern Oscillation (ENSO) (Iizumi et al., 2014a; 

Abdolrahimi, 2016), NAO and Indian Ocean Dipole (IOD) (Heino et al., 2018). Najafi et al. 

(2018a) presented a global analysis of the changes in crop yields and their relationship to 

both large-scale and local climate using a Bayesian multilevel model. It should be noted 

that separating the influence of climate on crops from other variables is very complicated 

due to high spatial and inter-annual variability of yields across countries. In this regard, 

reducing the size of data can help to better understand and interpret its structure, while 

minimizing information loss. 

In a world where about 85% of countries do not have complete food self-sufficiency (Puma 

et al., 2015), the import of food has enabled many countries to face food security problems 

by importing crops from other countries (Porkka et al., 2013). But if the influence of climate 

prompts countries to reduce or suspend crops export, as Argentina, Ukraine, Russia, and 

Serbia did in the world food crisis during 2007 and 2008, countries that are largely 

dependent on crops import could face crisis. Export bans in main crop producers would put 

about 200 million people at risk of hunger (d Amour et al., 2016). Countries that import 

crops for feeding their population put their people at risk when they depend on a few 

exporters. One approach to tackling this problem is identifying the countries with similar 

and dissimilar yield patterns since these countries may be able to trade the excess of their 

crops during times of food scarcity. Additionally, it is of great importance to recognize the 

climatic variables that drive these synergistic variabilities across countries. So far, no 
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efforts have been made to identify whether co-occurrence of yield deficits/surpluses is 

systematic across the globe. 

In this study we used a machine learning approach called Robust Principal Component 

Analysis (RPCA) to decompose yield time series of maize, rice, sorghum and soybean 

(MRSS) from 1961 to 2013 to several modes or principal components (PC) to assess the 

association between crop yields and climate more accurately. Moreover, we use these 

modes to identify co-varying crop producers and joint dependencies between crops. This 

paper is organized as follows: section 2 provides the detailed information about the 

database. Section 3 and 4 presents the methodology and discussion regarding removing 

outliers and extracting persistent yield anomalies. In Section 5, we present the relationship 

between the main PCs and local climate and co-varying countries. In section 6, the 

association between major PCs and large-scale climate will be presented. In section 7, 

joint dependencies between crop yield variability is discussed. Finally, concluding remarks 

and highlights will be presented in Section 8. 

2. Dataset 

In this section, we explain different climatic and non-climatic variables, their importance 

and preprocessing steps. 

2.1. Crop yields data and standardization methodology 

Annual crop yields data from 1961 to 2013 are collected from the Food and Agriculture 

Organization of the United Nations statistical databases (FAO, 2016). In this study, we 

focused on the countries that have complete yield data in this period. Yields data are 

standardized using a seven-year moving window (Troy et al., 2015). 
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y − y Equation 1 
t t −3,t +3Y = t std (t )t −3,t +3 

yt−3,t+3In Equation 1, Yt is the detrended yield value, yt is the original yield value, is the 

mean of the original yield values for the seven-year moving window, and std(yt-3,t+3) is the 

standard deviation of the original yield values for the seven-year window. The detrending 

approach that is used here leads to losing the first and last three years, So the final time 

span of detrended yield values are from 1964-2010. 

2.2.  Palmer drought severity index 

Palmer drought severity index (PDSI) not only integrates precipitation and temperature, but 

it is also highly correlated with soil moisture content (Dai et al., 2004a). PDSI ranges from 

about -10 (dry) to +10 (wet) and represents both dryness or wetness (depending on the 

region that may imply floods or moderate rainfall (Dai et al., 2004b)). Gridded monthly self-

calibrated PDSI, at 2.5-degree resolution, was obtained from NOAA/OAR/ESRL PSD, 

Boulder, Colorado, USA, from their web site (NOAA-ESRL, 2017). Unlike the detrended 

yields data that are from 1964 to 2010, the time span of PDSI (and other climatic variables) 

is from 1963 to 2010, since the association between PCs and PDSI (and other climatic 

variables) with one-year lag will be considered in this study. 

2.3. Air temperature anomalies (ATa) 

Monthly temperature anomalies data of the University of Delaware Air Temperature & 

Precipitation, at 0.5-degree resolution provided by the NOAA/OAR/ESRL PSD, Boulder, 

Colorado, USA, from their web site (NOAA-ESRL, 2017). 

2.4.  Sea Surface temperature anomalies (SSTa) 

Monthly Extended Reconstructed Sea Surface Temperature (ERSST) version 4 dataset, at 

2.5-degree resolution, provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, 

from their web site (NOAA-ESRL, 2017). 
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2.5. Oceanic and atmospheric indices 

Multiple monthly atmospheric and ocean time series (NOAA-ESRL, 2017) are used to 

study the links between large-scale climatic patterns and modes of crop yield variability. 

The detailed information of these indices are provided in Table 1. 

Table 1. Oceanic and atmospheric indices discussed in this study 

Name of index (abbreviation) Description Reference 

Eastern Tropical Pacific SST (Nino 3) SST in Tropical Pacific measured at 5N-5S and150W-90W. 

Central Tropical Pacific SST (Nino 4) SST in Tropical Pacific measured at 5N-5S and 160E-150W. 

East Central Tropical Pacific SST (Nino 3.4) SST in Tropical Pacific measured at 5N-5S and 170W-120W. 

Extreme Eastern Tropical Pacific SST (Nino 
1+2) 

SST in Tropical Pacific measured at 0-10S and 90W-80W. 

Multivariate ENSO index (MEI) The first seasonally varying principal component of six atmosphere-ocean variable fields in the 
Tropical Pacific basin. 

Wolter and Timlin 
(2011) 

Oceanic Nino Index (ONI) Three months running mean SST anomalies in the Nino 3.4 region, based on changing base 
period. 

Trenberth and 
Stepaniak (2001) 

Pacific Decadal Oscillation (PDO) The first PC of monthly SST anomalies in the North Pacific Ocean. 
Mantua and Hare 
(2002) 

Tripole Index for the Interdecadal Pacific 
Oscillation (TPI-IPO) 

The difference between the SSTa averaged over the central equatorial Pacific and the average 
of the SSTa in the Northwest and Southwest Pacific. 

Henley et al. (2015) 

North Pacific Pattern (NP) Area-weighted sea level pressure over 30N-65N and 160E-140W. 
Trenberth and Hurrell 
(1994) 

Pacific/ North American pattern (PNA) 
Geopotential height anomalies (usually at 700 or 500 hPa) observed over the eastern and 
western US. 

Leathers et al. (1991) 

West Pacific Index (WP) A primary mode of low-frequency variability over the North Pacific. 
Wallace and Gutzler 
(1981) 

Caribbean SST Index (CAR) The time series of SSTa averaged over the Caribbean. 
Penland and 
Matrosova (1998) 

East Atlantic Pattern (EAP) The second prominent mode of low-frequency variability over the North Atlantic. 

North Atlantic Oscillation (NAO) Surface pressure dipole between Iceland and the Azores. Leathers et al. (1991) 

Tropical Southern Atlantic (TSA) Anomaly of the average of the monthly SSTa at 0-20S and 10E-30W Enfield et al. (1999) 

Atlantic Multidecadal Oscillation (AMO Average SSTa in the North Atlantic Ocean over 0-80N to measure the variability occurring in Enfield et al. (2001); 
(unsmoothed)) the North Atlantic Ocean. Kerr (2000) 

Western Hemisphere warm pool (WHWP) Monthly anomaly of the ocean surface area warmer than 28.5 degree Celsius in the Atlantic 
and eastern North Pacific and eastern North Pacific 

Wang and Enfield 
(2003a). 

Quasi-Biennial Oscillation (QBO) 
A quasi-periodic oscillation of the equatorial zonal wind between easterlies and westerlies in 
the tropical stratosphere. Baldwin et al. (2001) 

Southern Annular Mode (SAM) Pressure dipole between the Antarctic and Southern and Hemisphere mid latitudes. Marshall (2003) 

2.6. Global coverage of MRSS croplands 

In order to obtain the global spatial coverage of MRSS croplands, we combined the 

irrigated and rain fed maps for each crop (Portmann et al., 2010; ORNL, 2016). The 

resulting maps are used to specify the spatial coverage of croplands as well as croplands 

areas (in hectare (ha)) in the countries of this study that are impacted by local climate 

variability. 
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3. Methodology 

Principal component analysis (PCA) is one of the most widely used statistical methods for 

dimensionality reduction. However, its drawback regarding the treatment of outliers may 

put its validity in question (Candes et al., 2009). Basic statistical methods often result in 

unreliable results in the presence of outliers (Demsar et al., 2013). This prompted us to use 

the robust version of PCA. In this study we employed RPCA as a machine learning 

approach. RPCA decomposes a rectangular matrix M into a low-rank component (L 

matrix), and a sparse component (S matrix), by solving a convex program called Principal 

Component Pursuit (Candes et al., 2009). 

min(||L||∗+λ||S||1) Equation (2) 

L + S = M Equation (3) 

||L||∗ is the nuclear norm of L. In Equation 2 lambda is the parameter of the convex problem 

that is minimized in the Principal Components Pursuit algorithm (Candes et al., 2009). 

RPCA computes the S matrix in a way that minimizes the norms, so RPCA yields lower 

number of PCs than ordinary PCA. In our case, M represent the yield anomalies matrix. 

One dimension of M is time (1964 to 2010) and other dimension is countries (location) and 

the values are locally (country-wise) detrended yield anomalies. The S matrix contains all 

the simultaneous anomalous values and the L matrix exhibits detrended yields without 

outliers in the countries from 1964 to 2010. The values in the S matrix may be considered 

poor observations due to biased measures or true values, so the S matrix should be 

carefully evaluated to see if the values are errors or valid numbers. Exploring the S matrix 

is not in the scope of this study and demands a separate investigation. In this study, the L 

matrix will be scrutinized in detail. 
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4. Low rank matrix; persistent yield anomalies 

Crop yields anomalies in some years to a great extent are positively or negatively larger 

than other years. These anomalies may be attributed to unusual favorable or extreme 

climatic patterns. Lots of the values in the S matrix are zero since large positive or negative 

yield spikes do not happen frequently across the global countries. L matrix that contains 

persistent yield anomalies, delivers three types of results: loadings, eigenvalues and 

scores. Loadings that contain uncorrelated PCs are linear combinations of the actual 

variables (Jolliffe, 2002). 

Each PC that is constructed from the L matrix, explains part of global yield variability. Here, 

RPCA decomposed the yield anomalies of MRSS into 28, 28, 27 and 20 components 

respectively. The first PCs contain the maximum variation of the original variables and vice 

versa. Eigenvalues provide a measure of the variance explained by each PC. In this study, 

the first 3 PCs are retained for detailed analysis. These PCs of MRSS explain 24%-31% of 

the total yields variance of the L matrix. Each PC is associated with a score vector. Scores 

are normalized yield time series and can be used to find links between PCs with other 

variables (such as climatic time series) by means of correlation analysis. It should be noted 

that the time-span of MRSS yield anomalies is from 1964 to 2010, so the score vector of 

each PC refers to this period. In each PC, countries with positive values have a direct 

relationship with that PC (and vice versa) and the magnitude defines the power of this 

association. So, in each PC, the countries with a large loading value are of significant 

importance. These countries not only co-vary similarly/oppositely (same loading sign value 

countries co-vary similarly and vice versa), but they explain the variance of that PC the 

most. Hence, large loading value countries (LLVC) will be explored in further detail. The 

distribution of the loadings values of the first three PCs (Figure 1) show that normal 

density, with a good approximation, fits loadings values. 
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Figure 1. The histogram of the loadings of the first 3 PCs acquired from the L matrix and a fitted 

normal density curve. The vertical blue (orange) lines show mean minus (plus) one standard deviation for the 

loadings values for each PC. 

Therefore, we choose the LLVC based on one standard deviation exceedance of loadings 

values from the mean from both sides in each PC. Figure 2 depicts the countries that have 

large loadings values in many PCs (at least 12, 11, 8 and 10 times across all PCs of MRSS 

respectively). These countries explain a large part of variability in the corresponding PCs 

and yield anomalies in these countries are more volatile than other countries. Among the 

identified countries in Figure 2, Brazil and Peru (sorghum, soybean), South Korea (maize, 

sorghum, soybean), Argentina (soybean), Bolivia (rice), Gambia and Sri Lanka (maize, 

sorghum) have many large loading values across PCs for more than one crop. Four out of 

seven of these countries are located in South America. There is considerably large 

variability of soybean in North and South America and Middle and Southern African 

countries. Most of the identified sorghum producing countries are located in the mid 

latitude. 

Here, spearman correlation is used to assess the association between climate and PCs in 

both concurrent and one-year lag phases. It should be noted that correlation does not 
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show out-of-sample predictive power (Friedman and Schwartz, 1991) or causation. We 

only report 

Figure 2. The countries with large loadings values in at least 12, 12, 11, 8 and 10 PCs (40% of PCs) 

acquired from L matrix of MRSS respectively. 

the correlations with significance level lower than 0.05. However, the first few PCs easily 

interpreted in many climatological and meteorological examples (Jolliffe, 2002), they are 

not always associated with meaningful physical phenomena and are not always easy to 

interpret (Demsar et al., 2013). Figure 3 (Figure 4) presents concurrent correlation (CC) 

and one yearlag correlation (LC) between the first three PCs of MRSS and annual average 

of SSTa and ATa (PDSI). In both Figure 3 and Figure 4 we showed significant correlations 

(95%) with SSTa. Significant correlations over croplands of MRSS are marked with small 

black dots. 

The boundary of LLVC are highlighted in orange (large positive loading values) and blue 

(large negative loadings values). Throughout the manuscript, all the reported numbers are 

based on the countries that are considered in this study. For example, global maize 

production/cropland area refers to production/cropland area of maize in 130 countries of 

this study. 

5. Climate variability across MRSS croplands and co-varying nations 
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LLVC in PC1-PC2-PC3 account for 16%-14%-13%, 4%-8%-10%, 52%-32%-49%, 72%-

41%-35% of the global MRSS production. As it can be seen a great deal of global yields 

variability of sorghum and soybean anomalies happen in a limited number of co-

Figure 3. Concurrent (one-year lag) correlation between the PC1, PC2 and PC3 of maize, rice, sorghum and 

soybean and SSTa and ATa over croplands from 1964 to 2010 (1963-2009). These three PCs explain about 

24%, 25%, 25%, 31% of the global maize, rice, sorghum and soybean yield variabilities in the low rank matrix 

respectively from 1964 to 2010. The locations with statistically significant correlations (95%) over croplands are 

designated with small black dots and only significant correlation (95%) between SSTa and the score of each 

PC are depicted. The boundary of the countries with large positive (negative) loading values are highlighted in 

orange (blue). 

Figure 4. Concurrent (one-year lag) correlation between PC1, PC2 and PC3 of maize, rice, sorghum 

and soybean and SSTa and PDSI over croplands from 1964 to 2010 (1963-2009). See the caption of Figure 3 

for more details. 
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varying countries with large production. Here, we computed the area of some regions that 

are impacted by AT or PDSI, in either concurrent or lag phase (from now on we call it the 

regions that are impacted by local climate). Globally, in PC1-PC2-PC3, 21%-26%-10% of 

maize harvesting regions, 6%-30%-23% of rice croplands, 8%-6%-16% of sorghum 

harvesting regions, and 46%-17%-15% of soybean harvesting regions of major producer 

countries were influenced by local climate. Many of these croplands are located within 

LLVC. In this study, major producers (MP) are the first 20 maize, rice, sorghum and 

soybean producers in 2013 based on the countries of this study (see Table S2-a for more 

information). 

In total, PC2-rice (45 million hectare (mha)), PC2-maize (38 mha) and PC3-rice (36 mha) 

represent the largest impacted croplands by local climate. Table 2 presents the 

percentages of croplands with significant local climate variability (SLC). PC2-maize (25 

mha), PC1-soybean (13 mha), PC2-rice (18 mha) and again PC2-rice (24 mha) exhibit the 

largest percentages of impacted croplands by AT, AT-lag, PDSI and PDSI-lag respectively. 

On average, SLC in sorghum croplands is smaller than the other three crops. 41 maize 

producers (most of them are located in Africa, Central America and Southeast Asia), 9 rice 

producers (Comoros, Belize, Honduras, Jamaica, Nicaragua, Trinidad and Tobago, Sri 

Lanka, Timor-Leste, Taiwan), 9 sorghum producers (Central African Republic, Guinea-

Bissau, Rwanda, Uganda, Dominican Republic, Haiti, Iraq, Lebanon, South Korea) and 3 

soybean producers (Liberia, Suriname, Taiwan) did not show any SLC in PC1-PC3. 

However, many of these countries exhibit SLC in other PCs. 

Figure 3 and Figure 4 show that the impact of ATa and PDSI in both concurrent and lag 

phases vary among countries/regions in different PCs. The ratio of impacted cropland 

areas by local climate in Figure 3 and Figure 4 for 10 regions (See Table S1 for the 

countries of each region) are shown in Figure 5. In PC1 56% of maize harvesting regions 

in Europe, 40% of sorghum harvesting regions in North America and 49% of soybean 
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harvesting regions in South America experienced the influence of ATa. 30% and 43% of 

sorghum and soybean harvesting regions in PC1 in North America were impacted by ATa-

lag. PDSI and 

Table 2. The percentages of MRSS croplands that experienced local climate variability in PC1 to PC3 

AT AT (one-year lag) PDSI PDSI (one-year lag) 

PC1 PC2 PC3 PC1 PC1 PC2 PC1 PC2 PC3 PC1 PC2 PC3 

maize 7.3 19 4.1 0.3 3 1.5 11 3.4 2.7 12 4.7 3.9 

rice 0.2 1.4 6.1 0.7 2.1 6.5 2.5 13 6.5 4 16 8.6 

sorghum 5.2 0.9 9.9 4.2 0.9 7.9 1.3 3.6 8.1 1.7 2.6 4.8 

soybean 18 5.4 1.2 18 0.2 0.4 4.4 1.5 11 12 13 2.7 

PDSI-lag extensively impacted soybean croplands in Oceania (47%) and maize croplands 

in East Asia (30%). In PC2 CC with ATa is more prominent than AT-lag especially for 

maize croplands in North America (42%) and soybean in Europe (29%). PDSI-lag was 

crucial over 47% soybean harvesting regions in South Asia. In PC3, rice and sorghum yield 

variabilities were impacted by ATa in both phases mostly in rice harvesting regions of 

Oceania (ATa, 37%), sorghum in West Asia (AT-lag, 49%) and South Asia (AT-lag, 25%). 

PC3 is indicative of a strong association with PDSI in some regions including rice 

croplands in South America (PDSI, 39%), sorghum croplands in North America (PDSI, 

41%), South America (PDSI, 

38%), southeast Asia (PDSI, 46%), Caribbean (PDSI-lag, 45%), and soybean croplands in 

South America (PDSI, 31%). 

Figure 6 demonstrates the croplands area in 10 MP that experienced local climate 

variability. In this figure, the overlappings of the impacted croplands area by ATa, ATa-lag, 

PDSI and PDSI-lag are not considered. A large extent of maize harvesting regions in China 

and US, rice in China, India and Thailand, sorghum in US, Mexico, India and Argentina and 

soybean in US, Brazil and Argentina experienced the influence of local climate variability. 
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More than half of Maize croplands in France, Hungary, Romania, South Africa, US and 

Pakistan, rice in Brazil, Bangladesh, South Korea, sorghum in South Africa, Canada, US, 

Indonesia 

Figure 5. The percentages of MRSS croplands in 10 global regions that experienced local climate variability in 

PC1 to PC3 

and Viet Nam and soybean in Italy, Romania, Turkey, Canada, Mexico, US, Argentina, Viet 

Nam and Japan impacted by local climate in at least one PC. 

Crop yield variability in major global crop exporters (ME) is crucial since many of importers, 

particularly major importers (MI) are dependent to these countries. Among maize 

producers, Brazil, France, Germany, Poland, Romania, Hungary, Bulgaria, Canada, 

Argentina (ME) and Morocco, Egypt, Taiwan, Iran, Peru, Venezuela, Chile, Colombia (MI) 

co-vary conversely in different PCs. Within rice producers, Spain, Paraguay, Romania, 

Hungary, Bulgaria, Uruguay, Argentina, Cambodia, Australia, Thailand (ME) and 

Cameroon, Ghana, Venezuela, Iran, Angola, Iraq (MI) are major exporters and major 
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importers that co-vary in an opposite manner across different PCs. Among sorghum 

producers, Hungary, Paraguay, Australia, Thailand, US, South Africa (ME) and Papua New 

Guine, Chad, Kenya, Sudan, Egypt, Colombia, Somalia (MI) and among soybean 

producers Brazil, Uganda, India, Romania, Canada, US, Indonesia (ME) and South Korea, 

Taiwan, Colombia and Vietnam (MI) are examples of LLVC that co-vary conversely in 

different PCs (See Table S2-b,c for the import and export ranks of countries in 2013). 

However, not all of the identified countries here trade with each other, but free trade 

between countries not only can be one part of the solution to global food security but it 

improves sustainable use of natural resources (Heisey, 2015). 

6. PCs’ links with large-scale climate 

Global drivers of atmospheric variability such as ENSO or NAO influence local climate 

across the globe (Steptoe et al., 2017; Pournasiri Poshtiri and Pal, 2014, Armal et al., 

2018) and subsequently can trigger simultaneous impacts on croplands. The relationship 

between crop yield variations and large-scale climate can be justified if those local climate 

variables are consequences of large-scale climate variabilities. In this section, we examine 

significant SSTa (sSSTa) in Figure 3 and the relationship between PCs and indices in 

Table 1. sSSTa are identified across many geographical locations in the Pacific Ocean 

(Figure 3c6-d1), Atlantic Ocean (Figure 3-b2-b6), Indian Ocean (Figure 3-d1), etc. Some 

PCs exhibit 
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 Figure 6.  Impacted MRSS croplands area by ATa and PDSI in both concurrent and lag phases in 10 

major MRSS producers in PC1 to PC3 

 

sSSTa that can be easily connected to well known climatic patterns, such as PC3-sorghum 

(Figure 3-c6) where sSSTa in the Tropical Pacific Ocean resembles the well known ENSO 

pattern. Moreover, it is already proved that localized SST variations can impact 

neighboring croplands (Shi et al., 2015; Dado and Takahashi, 2017). Figure 3 and Figure 4 

present some cases that may fall in this category. For example, significant ATa (sATa) in 
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the north of Madagascar, Zimbabwe, South Africa and Mozambique (Figure 3-c5) may be 

associated with sSSTa around Madagascar. Other example are sSSTa over Sea of 

Okhotsk and sATa in soybean harvesting regions of Japan (Figure 3-d5) and sSSTa in the 

Gulf of Mexico and sATa over soybean croplands of US (Figure 3-d3). 

Identifying the most impactful SSTa demands correlation analyses with various lead times. 

So, in Figure 3 (where SSTa features are based on annual average of climatic variables) 

all sSSTa may not be reflective of impactful patterns. Here, correlation between indices 

and PCs have been computed considering both annual averages of the indices and the 

December-January-February (DJF) seasonal average, both in concurrent and lag phases. 

This may give us more insight into identifying the most prominent oceanic and atmospheric 

mechanism behind these features. If a PC is largely correlated with both seasonal and 

annual average of an index, the one with larger correlation will be presented. There are 

several SST indices to characterize the nature of ENSO which are based on SSTa 

averaged across a given region in the Pacific Ocean (Trenberth and Stepaniak, 2001). 

These Nino indices, as well as Multivariate ENSO Index (MEI) and Oceanic Nino Index 

(ONI) are all used to describe ENSO (we call them ENSO indices). Among all the 

significant correlations with ENSO indices, the index with the largest correlation magnitude 

will be reported. 

ENSO is the major mode of coupled atmosphere-ocean in the Tropical Pacific Ocean. At a 

first glance to sSSTa (Figure 3), we recognize an extensive sSSTa in the Tropical Pacific 

Ocean in different PCs that among them the lag map of PC3-sorghum (Figure 3-c6) and 

concurrent map of PC3-soybean (Figure 3-d1) are more prominent. The patterns in these 

two cases increase the likelihood of a link between ENSO and climate variability over 

croplands such as sorghum harvesting regions of US and South Africa and soybean 

harvesting regions of China and Brazil. All the crops are significantly correlated with at 

least one of the ENSO indices. PC3-rice, PC3-sorghum and PC1-soybean in both lag and 
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concurrent phases and PC1-maize in concurrent phase are associated with ENSO. Unlike 

sorghum and rice, soybean shows different sign correlations with ENSO in concurrent and 

lag phases (33% and 36%). PC3-sorghum, in both concurrent and lag phases, has the 

largest correlation magnitude (about -52%) with ENSO indices. PC1-soybean in the lag 

phase is only correlated with Nino 4. We found the association between PC3-rice (PC3-

sorghum) and all of the ENSO indices in concurrent (lag) phase to be significant. ENSO’s 

effect on crop yields was already established in the 1980s (Handler, 1984). A plethora of 

studies have been conducted on the impacts of ENSO on crops such as maize in the US 

(Mourtzinis et al., 2016; Legler et al., 1999; Hansen et al., 1998), rice in China, Myanmar, 

Vietnam, US, Australia, North Korea, the Philippines, Central America and Europe (Chen 

et al., 2008; Iizumi et al., 2014b), sorghum in South America (Podesta et al., 1999), etc. 

PC3-rice (concurrent) and PC3-sorghum (lag and concurrent) are associated with Tripole 

Index for the Interdecadal Pacific Oscillation (TPI-IPO) (Henley et al., 2015). In these two 

PCs sSSTa can be seen in regions over the Pacific Ocean where TPI-IPO index is 

computed (Figure 3-b5-c5). CC between PC3-sorghum and seasonal TPI-IPO is the 

largest correlation magnitude found in this section (-0.55%). The Pacific Decadal 

Oscillation (PDO) pattern is centered over the mid-latitude Pacific basin (Mantua and Hare, 

2002). PC2-soybean is well correlated with PDO in the concurrent phase. This climatic 

pattern impacts temperature in Mexico to the southeast of the US and precipitation in 

Mexico to the southwest of the US, Canada, Australia and India (Mantua and Hare, 2002; 

Power et al., 1998; Krishnan and Sugi, 2003). Mexico, US, Canada and India exhibit 

climate variability over soybean croplands of PC2-soybean (Figure 3-d3 and Figure 4-d3). 

This is more prominent in India since this country is among LLVC. Caribbean SST Index 

(CAR) (Penland and Matrosova, 1998) that is based on SSTa over the Caribbean is only 

correlated with the lag phase of PC1sorghum during DJF. The most important feature of 

this PC is sATa in the Great Plains of US (Figure 3-c2). The CC between annual average 
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of North Pacific pattern (NP) (Trenberth and Hurrell, 1994) and PC3-sorghum is crucial. It 

has been reported that NP impacts temperature in west of North America and precipitation 

over Great Plains (Linkin and Nigam, 2008a). We found an extensive climate variability 

over sorghum harvesting regions of this PC (Figure 3-c5 and Figure 4-c5). West Pacific 

(WP) influences precipitation over the Pacific northwest and south central of Great Plains 

(Linkin and Nigam, 2008b; Gershunov and Barnett, 1998). PC3-sorghum exhibits the 

largest correlation with annual average of WP (CC). In this case US exhibits a large extent 

of sPDSI (Figure 4-c5). Pacific/ North American pattern (PNA) index is associated with 

both temperature and precipitation (Leathers et al., 1991). PNA impacts temperature over 

the west, south and southeast of US and precipitation in the Pacific Northwestern and 

upper Midwestern US. Rogers and Rohli (1991) have related crop damage in Florida to 

incidences of PNA and Garnett et al. (1998) used PNA to forecast the weather over crop-

growing regions in Canada. PC1- and PC3-sorghum are correlated with annual average of 

PNA (CC) and extensive croplands in North America in these two PCs were found to have 

a large correlation with ATa (Figure 3-c1-c5) and PDSI (Figure 4-c1-c5). The Western 

Hemisphere Warm Pool (WHWP) develops in the west of Central America. It appears in 

spring and is active until early Fall and it is linked with rainfall from northern South America 

to the southern tier of the US (Chunzai and B.; Wang and Enfield, 2003b). The CC 

between PC3-sorghum and annual average of WHWP is 50% (see the sSSTa in and west 

of Central America in Figure3-c5). Sorghum croplands in Mexico and US present an 

extensive SLC (Figure 3-c5 and Figure 4-c5). In this case, we computed the average of 

WHWP index during different months. Results show that the average of WHWP in March 

to May is highly correlated with PC1-soybean (-40%). 

North Atlantic Oscillation (NAO) is more apparent in the winter and is characterized by the 

NAO index. Here, all the crops in one PC are significantly correlated with NAO. The most 

prominent one is PC3-rice (-42%). NAO influences crop yields in the US, Europe (Kim and 
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McCarl, 2005; Gimeno et al., 2002; Tian et al., 2015; Gouveia et al., 2008), China, 

southeast of Asia, the Middle East, northeastern Africa, northeast of India and northeast of 

Australia (Heino et al., 2018; Guiling and Liangzhi, 2004). Guiling and Liangzhi (2004) 

found a long delay response of vegetation to the NAO index in Asia. They pointed out that 

it can be associated with carbon and nutrient cycling and biochemical responses to 

climate. PC1-rice, PC3-rice and PC3-sorghum are associated with the annual average of 

Tropical Southern Atlantic Index (TSA) with a one-year lag. PC1-rice and PC3-rice exhibit 

sSSTa in regions in the Atlantic Ocean where this index is computed (Figure 3-b2-b6). 

There is evidence of an association between rainfall over Central Equatorial Africa and 

TSA (Hirst and Hastenrath, 1983; Camberlin et al., 2001; Nicholson and Entekhabi, 1987). 

sPDSI can be seen in DR Congo (Figure 4-b2), Sudan, Chad, Nigeria and Central African 

Republic (Figure 4-b6). 

Gonsamo et al. showed the global association between NDVI and Atlantic Multidecadal 

Oscillation (AMO), but its impact on crops has not been explored yet. PC3-rice and 

seasonal AMO in the lag phase are correlated. Rice harvesting regions in this PC in Brazil, 

Morocco, Central African countries and east of Europe present sPDSI (Figure 4-b6). It has 

been reported that rainfall variability in northeast of Brazil, African Sahel and climate of 

North America and Europe are related to AMO (Knight et al., 2006). Indian Ocean Dipole 

(IOD) (Saji et al., 1999) impacts rainfall in Pakistan and south of China and temperature 

and precipitation in Europe, northeast of Asia, North and South America, South Africa, 

south of Iran and southwest Australia (Saji and Yamagata, 2003). IOD’s influence on crop 

productivity in Australia and North America has already been discussed in Yuan and 

Yamagata (2015) and Heino et al. (2018). PC2-soybean with IOD was found to be 

significant in the concurrent phase. Many of the aforementioned countries exhibit local 

climate variability across soybean croplands (Figure 3-d3 and Figure 4-d3). We found a 

significant correlation between PC1-soybean and Quasi-Biennial Oscillation (QBO) in 
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concurrent phase. The impact QBO on corn in the US and South Africa has been 

investigated (Malone et al., 2009; Jury, 2002). Southern Annular Mode (SAM) is the only 

index that is significantly associated with PC3maize (in concurrent phase) and PC2-

soybean (in concurrent and lag phases). SAM has a significant correlation with rainfall in 

China (Nan and Li, 2003), South Africa (Engelbrecht and Landman, 2016), South Asia 

(Prabhu et al., 2017) and southern and eastern Australia (Steffen et al., 2011). sPDSI can 

be seen in South Africa, Australia (Figure 4-a5) and India (Figure 4-d3-d4). In total, 

sorghum and maize have the highest and lowest number of significant correlations with the 

indices studied here, respectively. We did not find any links between PC2-maize, PC2-rice 

and PC3-soybean and the climatic indices. 

7. Joint dependencies between MRSS 

We tested joint dependencies among MRSS yield anomalies. The spearman correlation 

between all the combinations of the first 3 PCs of MRSS is computed to assess any 

association between their variations. Results indicates that PC2-soybean and PC2-

sorghum present the largest positive (0.42%), and PC3-rice and PC1-maize present the 

largest negative (-0.53%) correlations. Sorghum and rice, soybean and rice, and maize 

and soybean only in one PC are strongly correlated. Maize in different PCs co-varies with 

sorghum and rice. Figure 7 depicts the scatter plots of the PCs with significant correlation. 

These results are based on the yield variations in different number of countries. In order to 

have more coherent results we evaluated joint dependencies of MRSS in Argentina, 

Australia, Brazil, China, Colombia, DR Congo, India, Italy, Mexico, North Korea, Pakistan, 

Peru, Romania, South Korea, Tanzania, USA and Zimbabwe that have complete 

detrended yield data set from 1964 to 2010. These countries account for 76%, 56%, 55% 

and 89% of global MRSS production. Results show that PC3-rice and PC3-soybean within 
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these countries present the largest positive (0.37%) and PC2-maize and PC3-soybean 

present the largest negative (-0.41%) correlations. 

Figure 7. Scatter plots between PC1 to PC3 with significant spearman correlation (95% confidence interval) 

8. Conclusion 
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The global population is expected to reach 9.7 billion in 2050, climate extremes such as 

floods and droughts have had an uptrend since the last century in many countries across 

the globe (Asadieh et al., 2016; 2016; Poshtiri and Pal, 2016; Najafi et al., 2018b; Armal 

and Al-Suhili, 2019) and changing diets and demand 

for meat and dairy products are rapidly increasing (Godfray et al., 2010). Furthermore, the 

regions where foods are produced and consumed are becoming more disconnected (Fader 

et al., 2013). All of these are putting a detrimental pressure on global food security. 

Consequence management of future climate driven variables that negatively impact crops 

can be optimized (Afshar and Najafi, 2013) and improved if we gain knowledge about the 

past association between climate and crops. In this study we showed that the most 

important modes of persistent yield variabilities of maize, rice, sorghum and soybean, with 

high confidence, are well correlated with local climatic patterns. Maize croplands in Europe, 

south of Asia and North America, rice harvesting regions in Oceania and South America, 

sorghum croplands in North and South America, Caribbean, west and southeast of Asia 

and soybean croplands in North and South America, Oceania and Europe experienced 

local climate variability to a large extent. Our results indicate that many large-scale climatic 

patterns and climatic oscillations have a statistically detectable influence on different 

modes of crop yield variability, even where these effects have been less studied, for 

example TSA, SAM and QBO. Largescale climate, especially the ones that are attributed 

to the Central Pacific Ocean and Atlantic Ocean are strongly correlated with many PCs. In 

the first three PCs of the crops, ENSO and NAO were found to be the most dominant 

climate oscillation patterns. While country scale crop yields datasets are coarse, this 

analysis provides insights for understanding the crop yield variability and joint 

dependencies between countries. 

There are some limitations to the analysis presented here. The spatial coverage of the 

croplands used in this study is based on the croplands coverage in the year 2000 
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(Portmann et al., 2010). Since the croplands coverage has been changing through time 

with different intensities, the spatial coverage of croplands (Figure 3 and Figure 4) and 

impacted areas (Table 2, Figure 4, Figure 5 and Figure 6 ) presented in this study might 

not reflect the exact coverage and impacted areas, especially in some countries with 

substantial cropland changes such as Brazil. In addition, we used country based yield data 

(FAO, 2016). Since this data set integrates the yield of rain fed and irrigated crops, the 

impact of climate on rain fed and irrigated crops were not separated. Technological 

advances, seeds improvement, using fertilizers, farming practices, political issues, social 

strife and civil unrest, strategies applied for food security at regional scales, climate, 

regional shortages of energy and water all impact crop productivity. In this study, we 

focused only on climate and more studies are required to unveil and separate the impacts 

of these factors. 

Climatic drivers of crop yield variability provide a useful source for prediction purposes as 

forecasting systems are gradually becoming more skilled (Mazrooei et al., 2015) in long-

range prediction of certain global drivers of climate such as ENSO, NAO, SAM or PDO. For 

instance, the NOAA Earth System Research Laboratory produces statistical forecasts to 

predict the PDO (Alexander et al., 2008), the predictability of this pattern alongside the PCs 

that are well correlated with PDO as well as identified SLC found here can be used for food 

security purposes in the nations whose crop yields were impacted by this pattern. Our 

findings in this research have important practical implications as identified co-varying 

countries, especially import-dependent ones could take advantage of the favorable impacts 

of the climatic pattern. In other words, the negative impacts of climate on crop yields in 

some countries can be modified by its positive impacts in other countries. When 

importdependent countries be informed about the potential nations to trade with, the 

devastating consequences could get relieved in case of emergency and the global food 

security can be improved tremendously. It would be important to confirm and gain a better 
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understanding of these results by conducting similar studies on a regional scale using 

more detailed local data. Understanding the impact of different aspects of climate on crops 

is essential in order to inform decision making for food security purposes. Policymakers 

need scientific information to develop effective management and adaptation interventions 

such as infrastructure, technology and insurance measurements to protect vulnerable 

populations and to ensure global food security. This project tried to enhance the knowledge 

of global food security field, which is of relevance to policy initiatives, decision makers, 

water and energy managers, government and non-government organizations like United 

States Department of Agriculture (USDA) and Food and Agricultural Organization of United 

Nations (FAO), stakeholders and scientists with similar interests to ours. In the future, we 

will investigate more staple crops such as wheat and barley using the same methodology. 

In addition, the characteristics of the sparse matrix resulting from RPCA, particularly its 

association with climate, will be explored. 
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